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Nomenclature

A system dynamics matrix (n x n)

B input distribution matrix (n x m)

C state-to-output distribution matrix

(l x n)

Ce relative modal control effectiveness

matrix (n / x m)

c unit-length steady-state input

perturbation m-vector

cetj normalized relative modal control
factor, or element of Ce (2 = 1 to

n I, j = 1 to m)

D input-to-output distribution matrix

(l x m)

i imaginary number,

J objective function

l number of output perturbation

quantities

m number of input perturbation
variables

n number of state perturbation
variables

n _ number of system modes

O relative output significance matrix

(Zx n')

ok, _ normalized relative modal observ-
ability factor, or element of 0

(k = 1 to I, g = 1 to n _)

p roll rate perturbation in airplane

body axis, deg/sec

Q steady-state input-to-output distri-

bution matrix (l x m)

qk m-vector formed by the kth row of

Q

q pitch rate perturbation in airplane
body axis, deg/sec

r yaw rate perturbation in airplane

body axis, deg/sec

S optimization matrix (mx m)

t time, sec

u input or input perturbation m-
vector

in

uj input perturbation variable (j = 1
to m)

V nonsingular transformation matrix
between scaled and modal coordi-

nates (n x n)

Vt airplane total velocity perturbation,

ft/sec

W diagonal weighting matrix used for

scaling

x state perturbation n-vector

xi state perturbation variable (i -- 1 to

n)

y output perturbation/-vector

Yk output perturbation variable (k -- 1

to I)

(_ angle-of-attack perturbation, deg

fl angle-of-sideslip perturbation, deg

£ modal controllability matrix (n x m)

"/i,j element of 1_ (i = 1 to n, j = 1 to
m)

5 perturbation of control surface,

throttle lever, or thrust vector, deg

0 Euler pitch angle perturbation, deg

A modal dynamics matrix, block

diagonal (n x n)

Ai eigenvalue or element of A (i = 1 to

n), rad/sec

state perturbation n-vector in
modal coordinates

ai real part of eigenvalue Ai, rad/sec

modal observability matrix (l x n)

_Pk,i element of @ (k = 1 to 1, i = 1 to n)

¢ Euler bank angle perturbation, deg

¢ Euler heading angle perturbation,

deg

wi imaginary part of eigenvalue Ai,

rad/sec

Subscripts:

a aileron

as antisymmetric

f trailing-edge flap

PRECEDING PAGE BLANK NOT FILMED



n leading-edge flap

r rudder

s horizontal stabilator

ss steady state

sy symmetric

th engine throttle lever

tv thrust vectored

Superscripts:

s scaled quantity

T transpose of matrix [.]

, estimated best value for scaling

-1 inverse of matrix [.]

(") derivative with respect to time, d/dt

Abbreviations:

D.R. Dutch roll

Phug. phugoid

S.P. short period

Spir. spiral

iv



Abstract

An engineering approach for analyzing airplane control and output
characteristics is presented. State-space matrix equations describing
the linear perturbation dynamics are transformed from physical coor-
dinates into scaled coordinates. The equations are scaled by apply-
ing various transformations that employ prior engineering knowledge
of the airplane physics. Two analysis techniques are then explained.
Modal analysis techniques calculate the influence of each system in-
put on each fundamental mode of motion and the distribution of each
mode among the system outputs. The optimal steady-state response
technique computes the blending of steady-state control inputs that op-
timize the steady-state response of selected system outputs. An exam-
ple airplane model is analyzed to demonstrate the described engineering
approach.

Introduction

For the early phases of control system design
and analysis, engineers typically use a model of the

airplane dynamics represented by linear state-space
equations. The control design cycle usually begins
with an analysis of the basic airplane without au-
tomatic controls, followed by an engineering deter-
mination of the appropriate control structure and
subsequent calculation of the control system gains.
The engineer then analyzes and evaluates the air-
plane model including the control system. Depend-
ing on the results of the analysis, the engineer may
choose to adjust the design until it can be "frozen"
and implemented in nonlinear simulation for addi-
tional analysis. Figure 1 depicts this process.

As airplane designers attempt to extract more
and more performance from each new configuration,
controls engineers are increasingly confronted with
airplane models that have a large number of inputs
and/or outputs (possibly redundant) and higher or-
der dynamics. Under these conditions, it becomes
more difficult for the engineer to directly apply tra-
ditional analysis techniques and produce results that
are readily understood.

This report presents a systematic engineering ap-
proach for analyzing linear state-space equations.
Many of the relations presented are commonly used
by engineers and can be obtained either directly or
indirectly as by-products of the design process. For
example, the engineer frequently wishes to compare
the sizes of elements in particular matrices. Comput-
ing the relative sizes directly assists the engineer in
envisioning and understanding the physics of a given
problem. A formalized approach of scaling states,
inputs, and outputs is presented to accomplish this.

Although some extensions to the literature are
proposed, the primary goal of this report is not to

present new theory, but to emphasize the engineering
aspects of dynamics analysis for the control system
designer. An example is used to illustrate the types of
observations that can be made when applying these
analysis techniques.

Linear
analysis
of basic
airplane

Control law
design ._
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Figure 1. Linear control design and analysis process.



Mathematical Development

This section describes the mathematical develop-

ment of the engineering analysis approach. In ad-
dition to a traditional presentation of theory, en-

gineering assumptions or implementation issues are

also described. A diagram showing the hierarchy of

the analysis approach is shown in figure 2. Begin-

ning with a state-space description of a linear system,

the system is converted from physical coordinates to
scaled coordinates. The scaled system is used as the

basis for all subsequent analysis. One analysis tech-

nique transforms the scaled system to modal coor-

dinates and then manipulates the controllability and

observability matrices to compute quantities that in-
dicate the relative effect of the inputs on the modes

and the appearance of these modes in the outputs.

The second analysis technique uses the scaled system

to compute the "blend" of steady-state inputs that

"optimize" one or more steady-state outputs.

I Physicalcoordinates I

coordinates

/ "-.,
Optimal

steady-state
response

Modal analysis

I Modalcoordinates I •

Relative I I Relative
control output

effectiveness significance

Figure 2. Hierarchy and flow diagram for engineering analysis

approach.

State-Space Description of Linear

Dynamic Systems

The motion of many dynamic systems can be

described by a set of equations in the form

= fi(x,u) }y f2(x, u) (1)
J

where x is a vector of time-varying state variables,

u is a vector of input variables, and y is a vector of

output variables. The input variables u can be any
combination of force or moment generators, pilot or

command inputs, process noise or gust inputs, and

measurement noise inputs. In the literature a sepa-

rate term is commonly defined for each type of input

quantity, but here and in the subsequent develop-
ments they are grouped for notational compactness.

Equations (1) can be linearized about a refer-

ence condition. This reference condition is usually

an equilibrium point. The resulting linear equations,
valid for small perturbations from the reference con-

dition, are

± = Ax + Bu ]

y = Cx + Du _ (2)

where A is the system dynamic matrix, B is the in-

put distribution matrix, C is the state-to-output dis-

tribution matrix, and D is the input-to-output dis-

tribution matrix. Equations (2) are called the linear
state-space system equations, with the variables x, u,

and y being vectors of perturbation quantities. For
this report, the reference condition is an equilibrium

point; therefore, A, B, C, and D are time invariant.

Scaled Coordinates

Interpretation of dynamic system behavior can be

cumbersome because of the variety of units and mag-

nitudes of the parameters used to describe dynamic

motions. In a wide range of airplane problems scal-

ing of variables can make the analysis more coherent.

For example, aerodynamicists have tong known the

benefits of using nondimensional coefficients to ana-

lyze and compare various configurations.

Most efforts directed at solving the scaling prob-

lem consist of enforcing a common angular measure

(either degrees or radians) and sometimes scaling all

velocity elements by the total vehicle velocity at trim

(ref. 1). This subsection presents a different tech-

nique for scaling state perturbation variables, input

perturbation variables, and output perturbation vari-
ables. The purpose for this scaling concept is to pro-

vide a common basis for comparison in the analy-

sis. As an example, this concept results in scaling

of the inputs (controls) on the basis of each control

effector's maximum authority (limit). This scaling

concept also enables engineering knowledge of the

airplane dynamics to be captured and used in the

analysis.

Any system can be scaled by applying a similarity

transformation to its state variable representation

(ref. 2). Such a transformation does not affect the

eigenvalues of a system. Therefore, to scale the state

perturbation variables, define

x = Wxx s (3)



where x s is the scaled state perturbation vector and

Wx is an n × n diagonal matrix,

Wz - diag(x_, x;, ..., x*,, ..., x*) (4)

where x* is the estimated best value for scaling state
perturbation variable xi so that, in general

z_ < 1.0 (5)

is true for all time. A good value for x* in most cases
would be the predicted maximum value of the state

perturbation variable xi. This predicted maximum

value of the state perturbation variable should be

chosen to define the region of linearity for the model.

The choice of x_- requires engineering judgment and
is a way that physical understanding of the system

being studied is incorporated in the analysis.

The input perturbation variables are scaled on the

basis of their respective limits or authorities. Hence,

define an m × m diagonal scaling matrix for input
variables as

Wu-=-diag(u_, u_, ..., u_, ..., urn) (6)

where u_ is the maximum anticipated size for the

input perturbation variable uj. For controls, u_
are the control limits or authorities and are another

example of how the physical characteristics of the

system are included in the analysis. The largest

possible magnitude of an input is then unity. A

control input of ±1 is then said to be against its stop

(limit). Therefore, the scaling of the input variables

is applied by letting

u = W_u s (7)

Note that for many practical airplane problems, the

control position limit is not symmetric about the trim

control position. This point is further described later

in the "Example Application" section.

Finally, the output perturbation variables are

scaled by defining

y = Wyy s (8)

where yS is a vector containing scaled output pertur-

bation variables and Wy is a l × 1 diagonal matrix,

Wy--diag(y_, y_,..., y_, ..., y_) (9)

where y* is the maximum anticipated size for thek
output perturbation variable Yk. Like x.**, y_ should

be chosen to define the region of linearity for the
model.

Applying the scaling operations (eqs. (3), (7),

and (8)) yields the system equations in scaled
coordinates as

±s = ASx s + BSu s ]

yS CSx s + DSuS ] (10)

where the scaled system dynamics, input distri-

bution, state-to-output distribution, and input-to-

output distribution matrices are

A s = W_-IA Wx ]

B s = WxlB Wu

C s -- WylC Wx

D s = W_- 1D Wu

(11)

In subsequent developments,

noting the scaled quantities is

compactness.

the superscript s de-
omitted for notational

Modal Analysis

It is often useful to evaluate airplane linearized

dynamics in terms of the fundamental modes of mo-
tion. A system description in terms of its fundamen-
tal modes is often referred to as being in modal coor-

dinates. In this section, the scaled system (eqs. (10))

is first transformed into modal coordinates. Then

the controllability and observability matrices are ma-

nipulated to determine the relationships between the

system modes, system inputs, and system outputs.

The following discussion assumes that the system

dynamics matrix A has no repeated eigenvalues--
a reasonable assumption for airplane dynamics. An

eigenvalue defines a system's stability as well as nat-
ural frequency, damping ratio, and/or time constant

of a given system mode. For each eigenvalue, there

exists a corresponding eigenvector. Because eigen-

vectors define how the physical states participate in

a given mode of motion, modes are often identified

by examining the system eigenvectors (ref. 3).

Modal coordinates. Define the matrix V as a

similarity transformation assembled from the eigen-
vectors of A as follows. For each real eigenvalue of

A, one column of V is set equal to the correspond-

ing eigenvector. For each complex conjugate pair of

eigenvalues of A, one column of V is set equal to the

real part of the corresponding eigenvectors, and the

adjacent column is set equal to the imaginary part

of either eigenvector (ref. 2). This definition of V re-

suits in a matrix composed entirely of real numbers.



A transformationbetweenthescaledcoordinates
andthemodalcoordinatescanbedefinedas

x = v¢ /
(12)

= V-ix

Applying this transformation to the scaled system

(eqs. (10)) yields an expression for the system in
scaled modal coordinates:

= A_ + ru
(13)1y = ,I,_ + Du

where

A = V-1AV }
r = V-1B (14)

cI, = CV

Since the matrix D contains no information about

the system states x, the transformation to modal

coordinates does not operate on D, the input-to-

output distribution matrix.

The matrices A, r, and • can be used to gain

physical insight into the system under considera-

tion. The modal dynamics matrix A is in a block-

diagonal form known as modified Jordan canonical

form (ref. 4), each block containing the eigenvalue(s)

of a system mode. First-order modes produce a sin-

gle element on the diagonal equal to the real eigen-
value for that mode Ai. As a result of the definition

of V, second-order modes are represented by 2 x 2

blocks with the real, ai, and imaginary, _i, parts of

the complex conjugate eigenvalues on cross diagonals

as in the following example:

[ 00iIo'2 w2 •••

A= -w2 a2 ... (15)

0 0 ...

The modal controllability matrix r gives the de-

gree to which each control variable can excite each
mode:

711 712 • -. 71m

72 ! "/22 • • • "/2m

r = 7 1 732 ..- ")'3rn (16)

• ,•

7n 1 _/n2 • • • _/nm

A row of zero elements in r corresponding to a
first-order mode or two rows of zero elements in r

corresponding to a second-order mode indicate the

uncontrollability of that mode.

The modal observability matrix _ gives the de-

gree to which each mode is observed in each output
variable:

F_ll _12 ... _ln]

/ _021 _O22 "'" _2n /

¢I_----]_31 _0.32 ... _03n /:, (17)
! *•"

I__ 1 _012 • • • _n J

A column of zero elements in • corresponding to a
first-order mode or two columns of zero elements in

corresponding to a second-order mode indicate the

unobservability of that mode.

Engineers may examine A, r, and • for relative

types of comparisons as well as absolute measures

of influence; that is, they usually compare rows or
columns of numbers with each other--a burdensome

process as the size of systems under consideration

becomes large. This report proposes to precompute

the numbers of interest and then organize them in an
easily interpreted fashion.

Relative control effectiveness. Assuming that

the terms in equations (13) have been scaled, some

physical insight may be gained from comparing the
terms of matrix r. Engineers who use the modal con-

trollability matrix r during airplane dynamics anal-

ysis typically gain the most insight from comparing
the elements in a given row with each other. This is

nontrivial for systems with complex modal pairs.

To simplify this process, Lallman's relative modal

control effectiveness matrix (ref. 5) can be computed:

Ce= [Cet,j] (18)

For each nonzero row i in r that corresponds to a

first-order mode e in A,

JTidl (19a)

where 7i,j is the element in the ith row and jth
column in the matrix r. If i corresponds to the first

row in r for a controllable second-order mode g in A,

V/ 2 27i,j + 7i+l,j
= (19b)



Therangesofthesubscriptsare

i=1, 2, ..., n ]

j=l, 2, ..., m

g=l, 2, ..., n I

(20)

column for an observable second-order mode g in A,

_p2'i + qOk'i+l (22b)

°k'g---- _k=l_ (_,i + ¢P_,i+1)

where n is the number of system states and eigen-

values, m is the number of system inputs, and n t is

the number of system modes. If the system under

study has one or more second-order modes, n t is less

than n. If the system has an uncontrollable mode,

the corresponding row in Ce is defined to be the null
vector. The elements in Ce are the normalized rel-

ative modal control factors. The dimension of Ce is

n _ × m, and all elements in Ce are nonnegative and

less than or equal to one.

The relative control effectiveness matrix Ce is

used by individually looking at the matrix elements

in each row (corresponding to a mode g). A large

value of cee,j indicates that the jth control perturba-
tion has significant influence on the gth mode relative

to the other control perturbations. A small value in-

dicates a control perturbation that has little influence

over that particular mode. Matrix elements in differ-

ent rows of Ce cannot be compared since each row
has been normalized individually. Applications of the

relative control effectiveness matrix Ce include aid-

ing the engineer in determining the best set of control

effectors for a given system.

Relative output significance. The relative

output significance matrix O is analogous to the rel-
ative control effectiveness matrix defined in the pre-

vious section. This matrix can be used to determine

how much a particular mode can be observed in the

various outputs of the physical system under study.

Therefore, the relative output significance matrix O

is defined as a matrix formed by the columns of
normalized for each mode g in A:

O = [ok,g ] (21)

For each nonzero column i in • that corresponds to

a first-order mode g in A,

[_k,il (22a)ok,,-
_o2,i

where _ok,i is the element in the kth row and ith
column of the matrix _. If i corresponds to the first

The ranges of the subscripts are

i=l, 2, ..., n ]

k=l, 2, ..., l

g=l, 2, ..., n t

(23)

where I is the number of system outputs. If the

system under study has an unobservable mode, the

corresponding column in O is defined to be the null
vector. The elements in O are the normalized relative

modal observability factors. The dimension of O is

1 × n _, and all elements in O are nonnegative and less

than or equal to one.

The relative output significance matrix O is used

by individually looking at the matrix elements in
each column (corresponding to a mode g). A large

value of ok,e indicates that the kth output strongly
observes the gth mode relative to the other outputs of

the system. Small values of Ok,g indicate outputs that
weakly observe a particular mode. Matrix elements
in different columns of O cannot be compared since

each column has been normalized individually. Ap-

plications of the relative output significance matrix
O include aiding the controls engineer in determin-

ing which sensors best observe the system modes to
be controlled.

Optimal Steady-State Response

The development in this section was motivated by

a desire to provide an analysis and design technique

analogous to the Lallman pseudo-control method

(ref. 5). For airplane configurations with a large num-
ber of redundant control effectors, Lallman's method

can be used to allow computation of feedback gains

for a small number of pseudo controls (ref. 6). Lall-

man's method computes a controls blending vector to

maximize and/or minimize the response of a set of

system modes. It is conceptualized for control strate-

gies that decouple certain modes. Several airplane
dynamics and control problems, including longitu-

dinal rigid-body motion, require a different control

strategy. For this class of problems, a controls blend-

ing method is sought that would operate on the state

perturbations of a system, rather than on the system
modes.

Although there are many potential solutions to

this challenge, the author chose to develop a method

5



based on the relationship between the system input

perturbations and the steady-state response of the
system as measured in the output perturbations. For

this method to have validity, some proportional rela-

tionship must exist between the steady-state and the

transient response of the physical states to the system

inputs. Therefore, this method yields meaningful an-
swers only for certain types of airplane dynamics and
control problems.

The technique described in this section should be

used with caution for airplanes with unstable modes.

This is perhaps intuitive since any unstable mode

(and at least one of its associated physical states),
when excited by a system input, results in an infinite

steady-state output perturbation response. It is also

worth noting that the "steady-state" output response
predicted by a linear model may lie outside the

model's region of linearity (validity). The engineer

must be aware of the above facts and use judgment.

The steady-state response of the system outputs
due to a given set of system inputs can be determined

as follows. The existence of a steady-state condition
implies that

Xss = 0 (24)

For aircraft, the steady-state condition typically
restricts the model's reference condition to non-

accelerating flight. Combining the steady-state con-

dition (eq. (24)) with system equations (10) yields
the steady-state scaled system equations

0 = Axss + Buss (25a)

Yss = Cxss + Duss (25b)

in the scaled steady-state input perturbation vector

Uss. Therefore, the matrix computed in equation (27)

is an indication of the steady-state control power of

each system input as measured in the system outputs.
The goal is to determine the steady-state control dis-

tribution that maximizes a combination of selected

outputs while minimizing a combination of undesired

outputs.

The distribution matrix between the steady-state
inputs and the steady-state outputs is defined as

Q = -CA-1B + D (28)

Then let

Uss = eft (29)

where c is a unit-length vector of relative input

magnitudes and ft is a scalar pseudo-control variable.
Therefore, equation (27) becomes

Yss = Qc5 (30)

Let qk represent a column vector formed by the kth
row of Q. Form an objective function

q qJ = cT E kqk --T E kqkT
Outputs Outputs

\ to max. to min.

+ 10-5 remainingOutputsEqkqT) c52 (31a)

where A, B, C, and D are the scaled system dynam-

ics, input distribution, state-to-output distribution,
and input-to-output distribution matrices defined in

equations (11).

The following development assumes that the sys-

tem under study does not have any zero eigenvalues

(singularities). When singularities exist, the system
must be altered by deleting the physical state that

causes A to be singular (heading angle ¢ is a typical

example).

Having stated this caveat, equation (25a) can be
rewritten as

Xss = -A-1Buss (26)

Substituting equation (26) into equation (25b) yields

Yss = (-CA-1B + D)uss (27)

The values in the scaled steady-state output pertur-
bation vector Yss are directly related to the values

which is to be maximized irrespective of the value of
fi and subject to the constraint

cTc-- 1 (31b)

The constraint in equation (31b) is chosen so that

for the scaled system (eqs. (10)), the controls have
maximum deflections of +1. The first term of J

is a summation of the scaled steady-state output
perturbations to be maximized by selection of c, and
the second term of J is a summation of the scaled

steady-state outputs to be minimized by selection of
c. Outputs included in the remainder term of J have

some nonoptimal value.

The implementation indicated by equations (31)
was developed to allow selection of the minimum

set of outputs to be optimized without causing nu-

merical problems when using eigensystem decompo-
sition software. However, this implementation is not

without potential problems. The value chosen for

6



theremainderweighting(10-5) is basedon theau-
thor'sexperiencewith aircraftmodelsusingthescal-
ingtechniquesdescribedin thispaper.Thisweight-
ing must besufficientlylargeto preventnumerical
problemsassociatedwith thecomputeralgorithmbe-
ing used. Conversely,if the weightingis not suf-
ficientlysmallrelativeto the elementsin the row
vectorsqk, the "optimization"maycorrespondto
oneoftheremainderoutputs--anundesirableresult.
Properscalingshouldpreventthisproblem,but the
readerisadvisednevertheless.

An equivalentformulationto equations(31)can
bewrittenas

max _ =mi_t_ )

where

Outputs . s
\ to max.

+ 1°-5 Z
Outputs

remaining

(33)

for which the solution is well-known (ref. 7) and

described by

( cTSc'_ = Amax(S) (34)

Therefore, the solution for c is the eigenvector which

corresponds to Amax(S), the maximum eigenvalue of
the matrix S.

In the development described in equations (30)

through (34), it has been implicitly assumed that
the steady-state system output perturbations to be

maximized or minimized were of equal importance.

If this is not satisfactory, the above development can

be extended in a straightforward manner by applying

different weights to distinguish between the steady-

state outputs.

Display of Computed Functions

The previous section describes the computation
of various vectors and matrices which the control

system engineer can use to gain physical insight

into the dynamic system under study. Graphic dis-

play of these quantities can further aid the engineer

in quickly analyzing and understanding a dynamic

system.

Therefore, a format was developed for graphically

presenting the various vector and matrix quantities

which are computed using the analysis techniques

described previously. Both vectors and matrices are

presented in a bar chart format as shown in figure 3.

For matrices, multiple bar charts are plotted for the
set of vectors that define a given matrix.

1.0

.8

E .6
E .4

.2

o
-.2

_-.6

-.8

-1.0

1 2 3 4 5

Vector element

Figure 3. Bar chart format.

The bar chart vertical axis is the value of the

vector elements. The horizontal axis indicates the
elements of the vector. Each bar is located over an

integer tick mark indicating a vector element. The
height of the bar as measured against the vertical
axis denotes the value of the vector element.



Example Application

In this section, an example application is described to illustrate some of the observations that can be made

using the analysis techniques given in this report.

The example is a modern high performance airplane with a large number of redundant control effectors

and hypothetical thrust vectoring in trimmed level flight at an angle of attack of 20 °. Figure 4 is a drawing of

the example high performance airplane. A thrust-vectoring system consisting of turning vanes configured as

shown in figure 5 is postulated. For each engine, two turning vanes are used to deflect the exhaust flow. Each

set of turning vanes is oriented so that each upper vane is rotated upward 48 ° from the airplane's horizontal

axis. This thrust-vectoring system can generate control moments in the pitch, roll, and yaw axes. Note that

yaw control moments cannot be generated without also generating roll control moments, and vice versa.

The analysis techniques were implemented using the MATRIXx software package. (MATRIXx is a registered

trademark of Integrated Systems, Incorporated, Santa Clara, California.) The MATRIXx programming

capability was used as the language for implementing the modal analysis techniques. Reference 8 lists some of

the software used to analyze the examples.

The following linear system perturbation equations are for the example airplane at a trimmed, straight and

level flight condition: altitude of 5000 ft, angle of attack of 20 ° and total velocity of 235.1 ft/sec. The output

perturbation variables are postulated by the author.

State-Space Description

The linear system perturbation equations for the example airplane are given in equations (2) where

x= {Vt ol q 0 /3 p r ¢}T (35a)

y= {Vt a /3 p q r ¢ O} T (35b)

u={ ssy  .sy (35c)
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0 0 0 0 0

0 -0.091 0.342 -0.940 0.129

0 -7.89 -0.705 0.669 0

0 -0.130 0.013 -0.088 0

0 0 1.0 0.364 0

0 -0.026 0.168 0 0

-0.025 -0.016 -0.015 0 0

-0.133 -0.529 0.028 0 0

0 0 0 0 0

0 0 0 -0.003 0

0 0 0 2.95 3.48

0 0 0 0.005 -0.061

0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-0.002 -0.015 0.014

2.52 0.223 0.382

-0.095 0.420 -0.290

0 0 0

(35d)

(35e)

(35f)



Figure 4. Example high performance airplane.

Turning I

vanes

Figure 5. Postulated thrust-vectoring system.



All input perturbations(u) arein degrees.Thetotal velocity(t_) is in ft/sec;thevelocityvectorangles
andEulerangles((_,/3, ¢, and 0) are in degrees; the body axis rates (p, q, and r) are in deg/sec.

Scaled Coordinates

The diagonal weighting matrices defined in equations (4), (6), and (9) must be determined to apply the

scaling operations of equations (3), (7), and (8). The following guidelines are used to select the maximum

expected values of the state perturbation variables used in equation (4):

1. Define It* to be 10 percent of V_0, the total airplane velocity at trim.

2. Define (_* and/3* to maintain the airplane in the region of approximate linear aerodynamics about trim.

3. Define 0* to be 5° and ¢* to be 10 ° (linear region for Euler angles about trim.)

4. Define p* to equal ¢* in equivalent units (to maintain linearity in Euler angles for 1 sec).

5. Define q* and r* to equal one-fourth of p*.

These guidelines result in

Wz = diag(Vt*, (_*, q*, 0", /_*, p*, r*, ¢*)

= diag(24, 5, 2.5, 5, 2.5, 10, 2.5, 10) (36)

These same guidelines are used to determine the maximum expected values of the output perturbation variables

used in equation (9):

Wy = diag(Vt* , a*, /_*, p*, q*, r*, ¢*, 0*)

--diag(24, 5, 2.5, 10, 2.5, 2.5, 10, 5) (37)

Table 1 lists the guidelines used to select the maximum anticipated values of the input variables used in

equation (6). Several issues associated with selection of the maximum anticipated size for airplane control

input variables require engineering judgment. Each engineer may apply this judgment differently. During

the analysis, the author developed two "rules" to describe how engineering judgment influenced the scaling

methodology. The author offers these rules with the knowledge that they may be the subject of future debate.

Table 1. Guidelines for Scaling Input Variables

Variable Description

5Ssy Sym. horiz, stabilator
_fs_ Antisym. horiz, stabilator

_f_y Sym. leading-edge flap

_iI,y Sym. trailing-edge flap

5i, _ Antisym. trailing-edge flap

6_y Sym. aileron

_fa_ Antisym. aileron

_ftv,y Sym. thrust vectoring
_ftv_ Antisym. thrust vectoring

_th Throttle lever
5r Rudder

Lower limit,

deg
-24

-10

-3

-8

-8

-25

-25
-25

-25
31

-30

Upper limit,

deg
10.5

10

34

45

8

42

25

25

25

106.5
30

Trim value,

deg
-6.5

0

26.6

7.8

0

0

0

0

0

89.6

0

Maximum

anticipated

size, deg
6.9

10

7.4

15.8

8
1

24

12.5

12.5

16.9

30
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First,mostof thesymmetricandantisymmetriccontrolscannotbeat their respectivelimits at thesame
time. As anexample,antisymmetricthrust-vectoringvanescannotbedeflectedwhena full authority(25°),
symmetricthrust-vectoringinput is made. Therefore,the maximumanticipatedvaluesfor thesecontrol

effectors are reduced from the physical limits to allow simultaneous full authority deflections of the symmetric

and antisymmetric controls. For some control effectors, such as the thrust-vectoring vanes, the maximum

anticipated values allow equal authorities for the symmetric and antisymmetric controls. For other control

effectors, such as the aileron, the maximum anticipated values favor one control (in this case, antisymmetric)
over another.

Second, the most conservative maximum anticipated value is used for nonsymmetric control authorities

about trim. An example of this rule, combined with the first rule, is the horizontal stabilator. The -6.5 ° trim

position for symmetric horizontal stabilator 5Ssy permits a deflection from trim of -17.5 ° and +16.9 °. Applying

the first rule reduces the permissible deflection to -7.5 ° and +6.9 °. Therefore, the maximum anticipated value

for 5Ssy is 6.9 °.

These guidelines for scaling the input variables result in

* 5* 5* , 5* * 5* 5* * *Wu----diag(_ssy, 6nsy, fsy' asy tVsy, (_th, Sas' fas' _aas' _Vas' 5;)

= diag(6.9, 7.4, 15.8, 1, 12.5, 16.9, 10, 8, 24, 12.5, 30) (38)

Modal Analysis

Modal coordinates. The system (eqs. (35)) is transformed into modal coordinates with the following
result:

V

0 -0.6543 0.0776 0 0.1599 -0.1046 0 0
0 0.1573 0.0251 0 0.0803 -0.6561 0 0

0 -0.3048 0.1155 0 0.8983 0.0305 0 0
0 0.3692 0.8886 0 -0.2764 -0.6082 0 0

-0.0705 0 0 0.0698 0 0 0.6268 0.3682
0.1675 0 0 -0.2886 0 0 -0.6451 0.5948

-0.2774 0 0 0.1141 0 0 -0.0055 0.0737
-0.9434 0 0 0.9481 0 0 0.4370 0.3536

(39a)

A

'-0.1507 0 0 0 0 0 0 0
0 -0.0053 0.1693 0 0 0 0 0
0 -0.1693 -0.0053 0 0 0 0 0
0 0 0 -0.2934 0 0 0 0
0 0 0 0 -0.2989 0.6026 0 0
0 0 0 0 -0.6026 -0.2989 0 0
0 0 0 0 0 0 -0.2196 1.554
0 0 0 0 0 0 -1.554 -0.2196

(39b)

r

0 0 0 0 0 0 1.0968 2.400 8.333 -13.30 22.72
-1.324 -0.1306 0.3395 -0.0164 -0.7594 -0.1381 0 0 0 0 0
-1.735 -0.0917 0.4984 -0.0158 -1.001 0.1480 0 0 0 0 0

0 0 0 0 0 0 0.7685 2.054 7.538 -13.02 22.03
-5.378 -0.3311 1.053 -0.0625 -3.056 0.1449 0 0 0 0 0

-0.8951 -0.0628 0.4556 -0.0047 -0.5342 0.0665 0 0 0 0 0

0 0 0 0 0 0 -1.790 -1.769 -4.083 0.6504 -2.002
0 0 0 0 0 0 3.078 3.081 7.070 -1.395 4.046

(39C)
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_I ) =

0 -0.6543 0.0776 0 0.1599 -0.1046 0 0

0 0.1573 0.0251 0 0.0803 -0.6561 0 0

-0.0705 0 0 0.0698 0 0 0.6268 0.3682

0.1675 0 0 -0.2886 0 0 -0.6451 0.5948

0 -0.3048 0.1155 0 0.8983 0.0305 0 0

-0.2774 0 0 0.1141 0 0 -0.0055 0.0737

-0.9434 0 0 0.9481 0 0 0.4370 0.3536

0 0.3692 0.8886 0 -0.2764 -0.6082 0 0

(39d)

The eigenvalues and eigenvectors of the system in equations (39) are listed in tables 2 and 3. All the system

modes are stable. Note that the phugoid and short period modes are closer in natural frequency than is often

the case for airplanes. The roll and spiral modes have similar characteristics because of the relatively high trim

angle of attack.

Table 2. Eigenvalues of System

Eigenvalues

A] = -0.1507

A2 = -0.0053 ± i0.1693

A3 = -0.2934

A4 : -0.2989 ± i0.6026

A5 = -0.2196 ± il.554

Natural

frequency,

SeC -1

0.169

0.673

1.57

Damping

ratio,

rad/sec

0.031

0.444

0.140

Time

constant,

sec

6.64

3.41

Time-to-

Period, Ihalf-amplitude,

sec I
i

37.1 t

l 9.34 J
_ 4.00 I

sec Description

4.60 Spiral

131 Phugoid

2.36 Roll

2.32 Short period

3.16 Dutch roll

Table 3. Eigenvectors of System

Eigenvectors

State Spiral Phugoid Roll Short period Dutch roll

Vt

q

0

P

r

¢

0

0

0

0

-0.07

0.17

-0.28

l, -0.94

'-0.65 ± i0.08

0.16 +/0.03

-0.30 + i0.12

0.37 :t=i0.89

I 0
0

0

, 0

0

0

0

0

0.07

i -0.29

0.11

0.95 .

0.16 + i0.10 '

0.08 5:i0.66

0.90 + i0.03

-0.28 ± i0.61

0

0

0

, 0

' 0

0

0

0

0.63 + i0.37

-0.65 :l: i0.59

-0.01 + i0.07

, 0.44 ± i0.35,

Relative control effectiveness. The relative control effectiveness matrix Ge defined in equations (19)

is a collection of normalized relative modal control factors which enable comparison of the system inputs'

effectiveness for a given mode:

C e

_Ssy (_r_sy (_fsy _asy _tVsy (_th _sas _fas (Saas (_tvas (Sr

0 0 0 0 0 0 0.040 0.087 0.300 0.480 0.819"

0.839 0.061 0.232 0.009 0.483 0.078 0 0 0 0 0

0 0 0 0 0 0 0.029 0.077 0.282 0.486 0.823

0.853 0.053 0.180 0.010 0.486 0.025 0 0 0 0 0

0 0 0 0 0 0 0.333 0.332 0.762 0.144 0.422

Compare

Spir.

Phug. q. Do not
Roll ]
S.P. compare

D.R.

(40)

12



Figure 6 shows plots of the row vectors of Ce for the example airplane, the values for which are indicated in
equation (40). The first six columns of matrix Ce correspond to the longitudinal (symmetric) inputs, while

the remaining columns correspond to the lateral-directional (antisymmetric) inputs.

Recall that the rows of this matrix correspond to the system modes and the columns correspond to the

system inputs. For example, the lower right element in Ce (0.422) indicates the effectiveness of the rudder

on the Dutch roll mode relative to the other controls. Also recall that comparisons cannot be made between

matrix elements in different rows of Ce. For example, one cannot draw the conclusion that the rudder _fr is

more effective over the roll mode (0.823) than the Dutch roll mode (0.422).

Of all the controls, the symmetric stabilator _iS_yis the most effective in exciting both the phugoid and the
short period mode; this is observed by comparing values in the second and fourth rows, respectively, of Ce.

The rudder _fr is the most effective control in exciting the roll mode; this is observed by comparing values in

the third row of Ce. The rudder is less effective in exciting the Dutch roll mode than antisymmetric aileron

(_aa_ ; this is seen by comparing values in the fifth row of Ce.

Relative output significance. The relative output significance matrix O defined in equations (22) is a

collection of normalized relative modal observability factors which enable comparison of the system outputs'

ability to observe the motion of a given mode:

O

Spir. Phug. Roll S.P. D.R.

0 0.540 0 0.145 0

0 0.130 0 0.503 0

0.071 0 0.070 0 0.571
0.168 0 0.289 0 0.689

0 0.267 0 0.684 0

0.277 0 0.114 0 0.058

0.943 0 0.948 0 0.442

0 0.788 0 0.508 0

Do not compare

Pq I Compare

r

¢

(41)

Figure 7 is a plot of O for the example airplane, the values for which are indicated in equation (41). The

first, second, fifth, and eighth rows (vertical bars in fig. 7) correspond to the longitudinal outputs, while the

remaining rows (vertical bars in fig. 7) correspond to the lateral-directional outputs.

Recall that the rows of this matrix correspond to the system outputs and the columns correspond to the

system modes. For example, the third element in the rightmost column of O (0.571) indicates the appearance

of the Dutch roll mode in the angle-of-sideslip output _ relative to this mode's appearance in the other system

outputs. Also recall that comparisons cannot be made between matrix elements in different columns of O. For

example, one cannot draw the conclusion that angle of attack a better observes the short period mode (0.503)

than the phugoid mode (0.130).

The phugoid mode is primarily observed in 0 and _; this can be seen by comparing values in the second

column of O. The short period mode is mostly observed in q, 0, and a; this is seen by comparing the elements

of the fourth column of O. Of all the outputs, the Euler roll angle ¢ best observes the roll mode; this is seen

by comparing values in the third column of O. The roll angle is less effective at observing the Dutch roll mode
than both the roll rate p and the sideslip angle/_; this is seen by comparing values in the fifth column of O.
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Figure 6. Relative control effectiveness matrix Ce for example airplane.
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Optimal Steady-State Response

The system's steady-state input-to-output distribution matrix Q is

_Ssy _nsy _fsy _asy _tVsy _th _Sas _fas _aas _tVas _r

Q

6.00 0.338 -1.79 0.054 3.46 -0.444 0 0 0 0 0

'-6.15 -0.356 1.25 -0.069 -3.50 0.267 0 0 0 0 0
0 0 .0 0 0 0 1.30 0.997 1.64 2.41 -3.30
0 0 0 0 0 0 0.148 0.321 1.11 -1.76 3.02
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1.63 -3.52 -12.2 19.4 -33.1
0 0 0 0 0 0 -3.11 -7.11 -24.9 40.6 -69.4

0.100 0.301 -0.279 0.012 0.078 1.10 0 0 0 0 0

¼
ct

p
q
r

(42)

where the matrix Q is defined in equation (28). The rows in Q correspond to the system outputs and the

columns correspond to the system control inputs. Note that the row in Q corresponding to the steady-state
pitch rate perturbation output qss is a null vector. This is a direct result of the model structure and the

imposition of the steady-state condition. Since the model was trimmed in straight and level flight, 8 = q. Since
_ss = 0, then qss = 0 for this model.

The blending of input perturbations to achieve an optimal steady-state response for a thrust-vectored fighter

airplane can be computed as indicated in equations (30) through (34). Figure 8 plots the scaled (white bars)

input control deflections that maximize response in the ass output perturbation, but do not minimize any
steady-state outputs. The result is that the dominant controls are symmetric thrust vectoring and symmetric
stabilator.

As discussed previously, when one desires to compute the relative sizes of input perturbations using these

analysis techniques, proper scaling of the input variables is important. The shaded bars in figure 8 show the

result of not applying the input scaling of equation (38) during the analysis. To arrive at this result, the
blending vector c was computed for a version of the example system model with unscaled inputs. This c was

then transformed to scaled coordinates and normalized to unit length for comparison purposes. Recall that the

white bars indicate the values computed when the system inputs are scaled. Not scaling the inputs would cause

inappropriate utilization of symmetric thrust vectoring, trailing-edge flaps, and aileron, resulting in suboptimal

ass response.

1.0

.8

.6

.4
Q

m
> .2

0

%2

-.4

[] Scaled

I" "r I T r

8 s 5 n 8f 8 a 8tv 8th

Symmetric Inputs

Figure 8. Input distribution that maximizes ass response (with and without input scaling).
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Review

The most effective longitudinal control for the

airplane model is the symmetric horizontal stabilator

/iSsy as seen from the relative control effectiveness
matrix Ce. Similarly, examination of the relative
control effectiveness matrix Ce indicates that the

most effective lateral control is the rudder/_r and the

most effective directional control is antisymmetric

aileron _a_.

With the exception of the spiral mode, the air-

plane modes are observed in their conventional out-

puts (e.g., the phugoid mode is observed in Euler

pitch angle 0 and total velocity V_). The spiral mode

was observed mostly in Euler bank angle 4) since Eu-

ler heading angle ¢ was not included in the model.
The relative output significance matrix O indicates

that all airplane modes are being observed; if control

of the classical spiral mode is important, it may be

necessary to add _b as a system output to distinguish

this airplane model's spiral mode from its roll mode

for control design purposes.

The control deflections that optimized the ass re-

sponse were consistent with the control effectiveness
computations. For this example, input scaling af-

fected the control deflection magnitudes for optimal

ass respons_specially for symmetric aileron _asy

and symmetric thrust vectoring _tVsy-

Concluding Remarks

A systematic methodology has been outlined that

transforms linear state-space matrix equations in

physical coordinates to a set of matrix equations in

scaled modal coordinates. The scaling processes are

practical suggestions for handling the system units
and control input limits that require an understand-

ing of the system's physics. Guidelines for perform-

ing the scaling are indicated for the example airplane.
Once the system was transformed to scaled modal co-

ordinates, techniques were defined to analyze the ef-

fects of the system perturbation inputs on the funda-

mental modes of motion and the appearance of these

modes in the system perturbation outputs. Also de-

fined was a technique to compute a steady-state input

perturbation vector that optimizes the steady-state

response of selected output perturbations. Graphic
formats were developed to display the vectors and

matrices computed during the analysis. This was

done to promote quick understanding of the analysis
results for the dynamic system under study.

These analysis techniques have been applied to an

example thrust-vectoring airplane model. This ex-

ample is representative of the types of dynamics that
are encountered in current vehicle designs. The re-

sults of this example application illustrate the under-

standing which can be acquired using the described

modal analysis techniques.

The results of the analysis shown in this report

can also be utilized directly in the control design pro-

cess if desired. For example, the engineer can use
the relative control effectiveness matrix to decide how

the different control effectors should be allocated for

various control tasks. Similarly, the relative output

significance matrix can be used by the engineer to
determine the appropriate set of sensors to use in ob-

serving the system modes. For many airplane control

system designs, both these tasks can be easily accom-

plished using well-known heuristics instead of the ap-

proach described in this report. However, for many

modern airplane designs, with a large number of con-

trol effectors (often redundant) and where active con-
trol of structural vibration modes must be accom-

plished simultaneously with control of the rigid-body

modes, the relative control effectiveness and relative

output significance analyses are of value. Finally,
for the special case of an airplane configuration with

a large number of redundant control effectors, the

blending computation from the optimal steady-state
response technique or the pseudo-control method of
Lallman can be used to reduce the control law de-

sign by allowing computation of feedback gains for a

small number of pseudo controls.

NASA Langley Research Center
Hampton, VA 23665-5225
February 6, 1991
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